KOSO PARCOL

HISTORY of BALL VALVES as CONTROL VALVES

PARCOL S.p.A. has been founded in 1954 in Canegrate, a small town at the edge of Milano area.

Quickly grown as a leader in Valves and Control Valves for severe services applications, especially oriented to Energy sector and Steam conditioning systems, PARCOL has been acquired in 2019 by KOSO, after 65 years of activity.

Another Italian company, SEVEN, with important experience in producing On-Off Ball valves, was already owned by KOSO. SEVEN and PARCOL have

been joined together as unique Factory, now located in the historical headquarter of PARCOL, close to Milano.

Before the acquisition, Parcol was already producing Control ball valves combining the large experience in severe service globe control valve trims to an improved design of ball valves. Valves were produced in collaboration with another Italian Company (not part of KOSO Group), specialized in on-off ball valves.

Each valve was developed optimizing the design according to application needs. After SEVEN-PARCOL fusion, the original series of trims for ball valves have been quickly developed and embedded in KOSO design: the concept of Control has been therefore applied to original ball valves using an higher level of technology aimed to solve extremely advanced applications. An extended series of ball trims, including low-noise and anti-cavitation features has been realized.

FLUIDS

Each fluid such as Water, Steam, Oil, Methane, Liquefied Natural Gas (LNG), Oxygen, Nitrogen, MDEA, ... has its own characteristics and its own range of temperature and pressures. KOSO Parcol Ball valves are engineered to withstand any kind of challenging and severe process or ambient conditions.

FEATURES

Trunnion, Floating, Metal, Soft-Seated, Two or Three-pieces body construction, Single or Double-Seated, Side entry, Top entry, Double Block and Bleed, Extended bonnet, ... are just few example of most common Ball valves characteristics. The combination of these features, together with the accurate selection of materials and mechanical couplings, deeply influences the global result in product and control performances.

MATERIALS

Materials selection is fundamental to grant full compatibility with most aggressive fluids and to withstand erosion and corrosion or to grant the capability to sustain thermal gradients and high temperatures especially reducing frictions and wearing process.

TRIM

Each trim can be installed both in On-Off and Control Bodies. Some characteristics of sealing will change. Differently from many of our competitors, we install the trim internally to the ball, when the request of accuracy is high. This refined design allows superior performance compared to common downstream fixed resistor.

"Differences are in details"

SPECIAL CARE for SPECIAL UNCONVENTIONAL BALL VALVES

KOSO Parcol uses also in standard on-off Ball valve design the same attention and care that puts in any other advanced and critical systems. This is the secret of great and long lasting performances along the years for our Ball Valves.

Starting our journey from our original design, we should mention 7TSE (Trunnion side-entry) ball valve which original design is coming from Seven experience. Here below a general overview of all other "ball products".

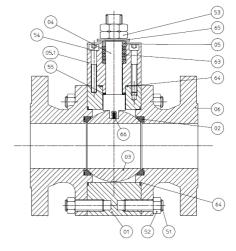
ON-OFF WORLD

SHUTOFF, INCHING and MANUAL BALL VALVES FAMILY

Manual valve, three pieces, floating and trunnion, soft and metal seat from 2" to 48" ANSI 150# to 2500#.

7TSE : Trunnion SIDE entry ball valve, available in both metal-to-metal and soft seated

7TTE : Trunnion TOP entry ball valve, available in both metal-to-metal and soft seated


7DBB : Double block and bleed, based on single or double ball configuration

700 : small manual valves, forged or casted supplied for completion of supply packages

Common features such as API Design, Fire Safe, or SPE/DPE seats configuration... Special and customized design including wetted parts cladding, advanced cladding for seats and ball, ...

713: three-way "T" "L" and "Y" ball valve also available with electrical and steam jacket for crystallizing fluids.

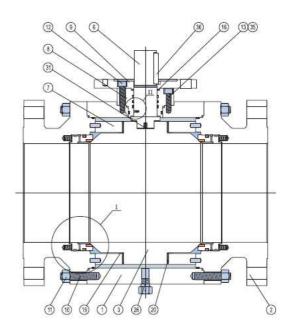
750 : floating ball for general on-off service. Not recommended for Control applications.

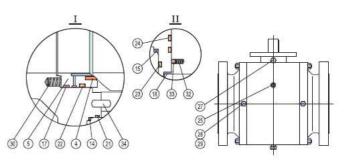
Floating soft ball valve

KOSO FAKCOL

ON-OFF METAL & SOFT SEATED 2 or 3-PIECES TRUNNION BALL

DESIGN STANDARD:


- Design: API 6D / ASME B16.34 / ISO 14313
- Face to face: API 6D / ASME B16.10
- End Connections: ASME B16.5 / ASME B16.25


CERTIFICATION:

- PED: 2014/68/EU
- ATEX 94/9/EC
- Fugitive emission: ISO 15848-1 BH/CH CO1
- SIL: IEC 61508 (SIL2, SIL3 Capable)

DESIGN FEATURE:

- 3-pieces bolted body
- Fire Safe design API 607 / 6FA
- Blowout-proof ball seat and stem construction
- Standard ASME Materials and NACE, EN and other materials available on request
- High Performance Sealing
- Packing with live loading available
- Double block and Bleed function available
- Self-relief on excessive cavity pressure
- Antistatic device
- Locking device
- Low operative torques
- Leakage Class up to IEC 60534-4 Cl.VI and API 508 Rate A

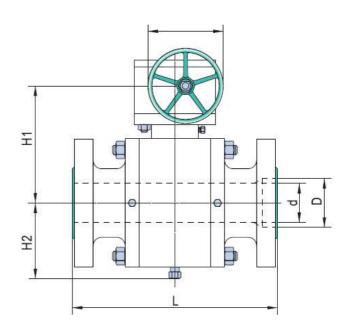
Conventional Manual Ball valve for general application

FACE-TO-FACE DIMENSION for STANDARD DESIGN

Full Bore - Class 150

Size	D	L	H1	H2	W	Weight
in	mm	mm	mm	mm	mm	Kg
2	51	178	155	85	350	30
3	76	203	191	110	400	60
4	102	229	211	130	450	92
6	152	394	231	160	*305	190
8	203	457	282	235	*406	345
10	254	533	336	290	*406	495
12	305	610	373	315	*406	705
14	337	686	413	345	*406	859
16	387	762	457	383	*600	1020
18	438	864	501	435	*600	1440
20	489	914	551	495	*600	1918
22	540	991	600	555	*600	2352
24	591	1067	635	590	*700	2803

Full Bore - Class 300


Size	D	L	H1	H2	W	Weight
in	mm	mm	mm	mm	mm	Kg
2	51	216	155	85	400	31
3	76	283	191	110	450	69
4	102	305	211	130	500	110
6	152	403	229	160	*305	211
8	203	502	291	235	*406	376
10	254	568	340	290	*406	540
12	305	648	375	315	*500	763
14	337	762	417	345	*600	900
16	387	838	466	400	*600	1300
18	438	914	506	440	*600	1715
20	489	991	563	495	*600	2090
22	540	1092	605	560	*700	2220
24	591	1143	684	590	*760	2890

Full Bore - Class 600

Size	D	L	H1	H2	W	Weight
in	mm	mm	mm	mm	mm	Kg
2	51	292	155	85	400	45
3	76	356	193	112	500	80
4	102	432	239	140	700	150
6	152	559	266	175	*406	248
8	203	660	310	250	*406	438
10	254	787	354	290	*600	701
12	305	838	411	345	*600	855
14	337	889	435	370	*600	1230
16	387	991	493	420	*600	1535
18	438	1092	544	462	*700	2135
20	489	1194	629	515	*760	2640
22	540	1295	683	570	*800	3370
24	591	1397	728	610	*800	3960
	686	1549	810	695	*800	6060
	737	1651	863	735	*800	6690
	781	1778	900	775	*800	7825
	832	1930	940	820	*800	8460

Full Bore - Class 900

Size	D	L	H1	H2	W	Weight
in	mm	mm	mm	mm	mm	Kg
2	51	368	178	100	450	52
3	76	381	221	125	600	87
4	102	457	215	150	*305	160
6	152	610	268	215	*406	385
8	203	737	324	260	*600	560
10	254	838	371	305	*600	820
12	305	965	425	360	*600	1125
14	324	1029	463	390	*600	1610
16	375	1130	513	440	*710	2010
18	425	1219	614	500	*760	2810
20	473	1321	644	530	*760	3460
24	572	1549	745	630	*800	5497
	667	1753	830	720	*800	10202
	714	1880	880	755	*800	11442
	810	2159	970	850	*900	17462

Full Bore - Class 1500

Size	D	L	H1	H2	W	Weight
in	mm	mm	mm	mm	mm	Kg
2	51	368	178	100	450	60
3	76	470	226	130	700	115
4	102	546	241	162	*406	194
6	146	705	319	255	*600	580
8	194	832	345	280	*600	752
10	241	991	411	345	*600	1195
12	289	1130	478	405	*600	1970
14	318	1257	517	435	*700	2250
16	362	1384	599	485	*760	2760
18	407	1537	663	545	*800	3646
20	457	1664	695	580	*800	4497
24	534	2045	842	730	*900	7151

Full Bore - Class 2500

Size	D	L(rtj)	H1	H2	W	Weight
in	mm	mm	mm	mm	mm	Kg
2	44	454	214	118	700	90
3	64	584	216	150	*406	200
4	89	683	265	180	*406	385
6	133	927	371	305	*600	778
8	181	1038	426	360	*600	1352
10	225	1292	463	390	*710	2137
12	267	1445	550	465	*760	3267

CONTROL WORLD

4-4000 Valve Series: TRUNNION 2 or 3-Way CONTROL BALL VALVES

Metal Seated trunnion ball valves with special trim design defined and customized according to process conditions and customer requirements.

Low-noise, Anti-cavitation and multistage standard trim design to cover most common services and applications. Two or Three-way for mixing/diverting applications.

For advanced services and specific design, our technical department can provide customized solutions and trim designs thanks to the large experience granted by studies to offer to our Customers definitive solutions along more than 60 years of PARCOL's activity.

Steam jacketed Three-way Control ball valve for Urea

ADVANTAGES OF BALL VALVE (vs GLOBE)

Main advantages of a Control Ball Valve, compared to a Globe Valve are:

- Lower weight of bigger valve size
- Higher rated capacity
- Better and longer lasting seat sealing properties

Big Low-Noise Control ball valve for Natural Gas ready to be shipped

4-4001 (Typically for Control / Inching / Manual services)

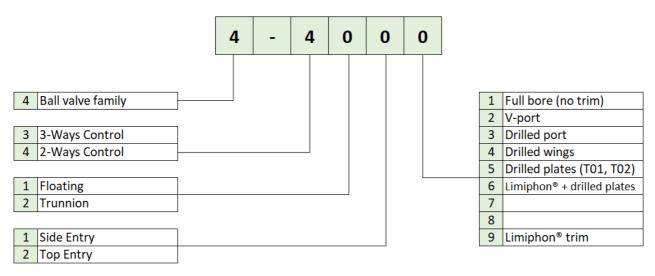
Control ball valve derived from original on-off design but implemented with specific upgrades to grant best controllability and smooth operation.

Normally supplied with a single metallic seat SPE/DPE to reduce frictions and with a classic full or reduced bore ball design, this valve can be used in not-critical applications as trimmer for flow or pressure fine control.

It can be supplied with soft or metal to metal seat depending on fluid characteristics and operating temperatures. Metal-seated ball valves are however recommended for Control application.

Full Bore Control Ball Valve

KOSO Parcol Production Facility


4-4000 CONTROL BALL VALVE FAMILY

A full range of technical solutions associated with ball valve design has been implemented over the years to address specific needs of our customers. This has resulted in ball valves with anticavitation trims and low-noise cartridges, carefully tailored to process requirements.

All the most common solutions can be found within our standard special valves, but in case of need the design is flexible and can be adapted to specific requirements.

Very often the selection of a ball control valve, even for severe service, is the best choice. The greater flow capacity compared, for example, to a globe valve of the same size, together with the enormous rangeability that inherently characterizes this particular design, makes it the winning choice.

Moreover, the ability to handle even significant pressure drops should not be forgotten, thanks to the various trims used and the natural predisposition to lower sensitivity in case of dirty fluids.



PRODUCT CODING

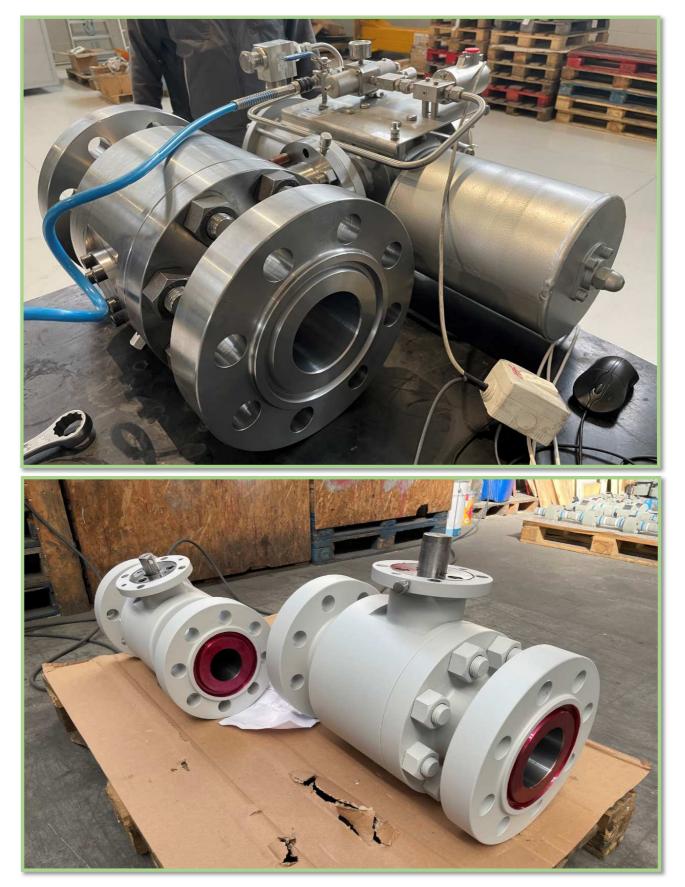
	Ô		Ó	Õ	T		1005
	4-4001	4-4002	4-4003	4-4004	4-4005	4-4006	4-4009
Rated capacity	*****	****	••	***	***	••	Customizzed
Range-ability	•	٠	••	••••	••	••••	••••• Customizzed
Anti-Cavitation	No	No	++	••	••••	••••	• • • • • • Customizzed
Noise reduction	No	No	***	••	****	****	*****
Compatibility with dirty fluids	••••	••••	٠	••	•••	••	•
Optimal working range	10% - 70%	10% - 70%	5% - 90%	5% - 70%	10%-70%	5% - 70%	5% - 90%

PRODUCT RANGE

	ANSI 150-600	ANSI 900	ANSI 1500	ANSI 2500
4-4001	2" to 48"	2" to 36"	2" to 24"	2" to 18"
Full port	2 (0 40	2 10 30	2 10 24	2 10 10
4-4002	2" to 48"	2" to 36"	2" to 24"	2" to 18"
V- port	2 (0 48	2 10 30	2 10 24	2 10 18
4-4003	2" to 48"	2" to 36"	2" to 24"	2" to 18"
Drilled port	2 (0 48	2 10 30	2 10 24	2 10 18
4-4004	4" to 48"	4" to 36"	4" to 24"	4" to 18"
Drilled wings	4 (0 48	4 (0 50	4 (0 24	4 10 18
4-4005	6" to 48"	6" to 36"	6" to 24"	6" to 18"
Perforated plates	0 10 40	0 10 50	0 10 24	0 10 10
4-4006	6" to 48"	6" to 36"	6" to 24"	6" to 18"
Limi-cage	0 10 40	0 10 30	0 10 24	0 10 10
4-4009	2" to 48"	2" to 36"	2" to 24"	2" to 18"
Limi-ball	2 10 40	2 10 30	2 (0 24	2 10 10

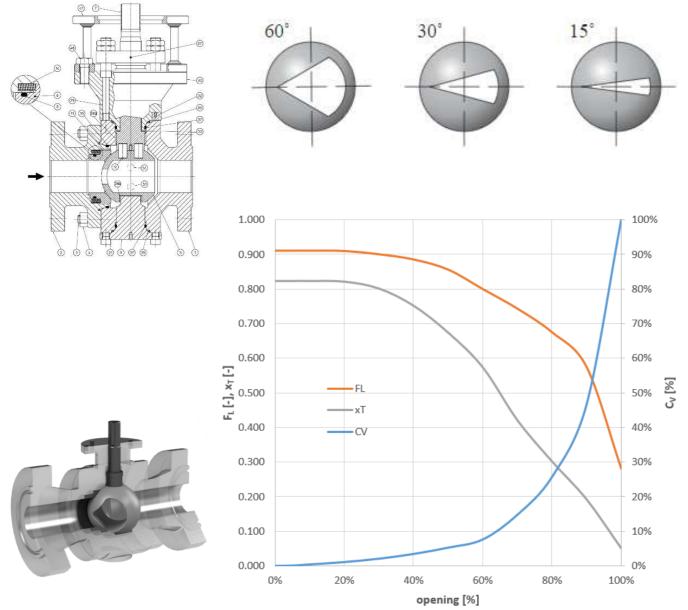
Control ball with anti-cavitation trim refining.

32" 300# 4-4216 CONTROL BALL VALVES FOR OIL & GAS APPLICATION (5.0 MPa of pressure drop)



ESDV BALL VALVE (EMERGENCY QUICK CLOSING in less than 0.21 s)

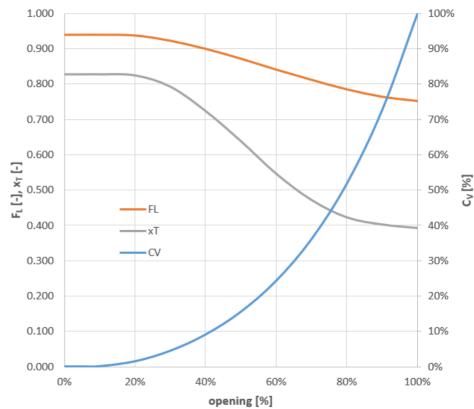
4-4002 : V-PORT BALL VALVE TRIM


Improved rangeability thanks to the V-shaped ball. The small "v" end that opens first improves throttling at reduced working angles dramatically extending valve rangeability and controllability.

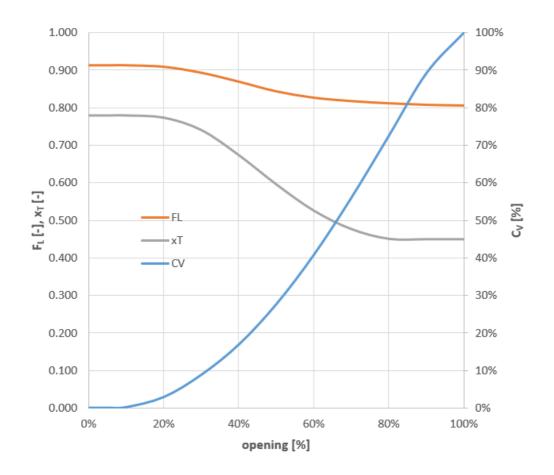
Customized "v" shape can realize tailor made characteristic flow.

This trim can be recommended when improved throttling characteristics are necessary maintaining negligible pressure drops in fully open position. This trim shall be used when Noise and Cavitation are not expected.

Recommended also for medium or low dirty and erosive fluids, even including slugs and slurries thanks to self-cleaning inherent design.

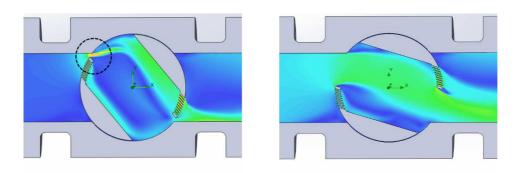

4-4003 : SINGLE STAGE, GENERAL PURPOSE

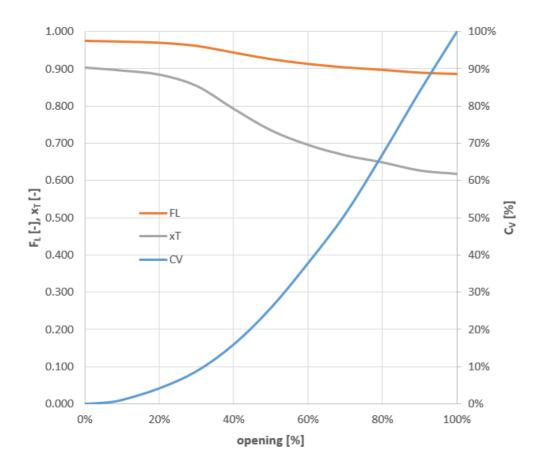
- Single stage for general purpose
- Variable drilling pattern along the travel
- Variable performances at different valve openings
- Equal-percentage characteristic curve (ST-E)
- Very high flow capacity considering performance at smallest opening
- Suggested for application involving liquids at low or intermediate pressure drop (ΔP)
- Suitable for dirty fluids
- Self-cleaning design



4-4003 : LN-L LOW NOISE

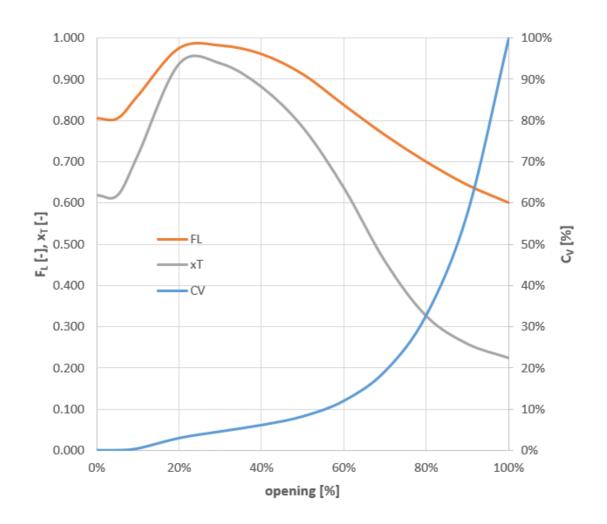
- Single-stage formed by a single spherical drilled surface. Available also in double stage configuration.
- Drilling pattern and holes distribution for best Controllability and Low Noise (LN) performance characterized by very low F_d.
- Standard, Linear, Equal% or customized characteristic curves.





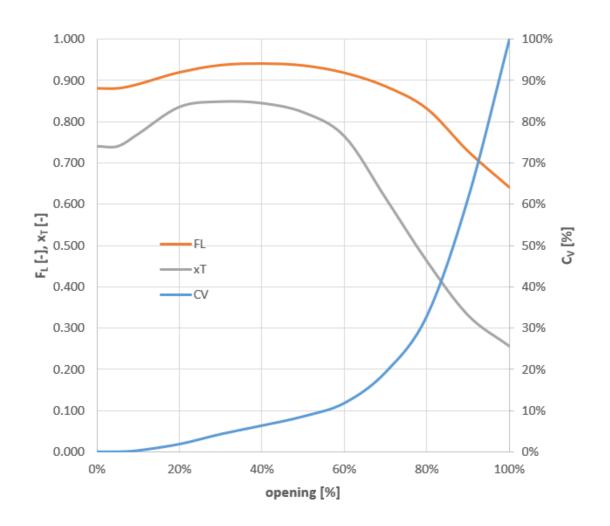
4-4004 : LN-L / LN-E - LOW NOISE, LINEAR or EQUAL%

- Double drilled baffles for two-stage pressure reduction and Linear or Modified Linear characteristic flow
- Baffles extension and cut can be customized on actual process data to ensure suitable flow coefficients and improve global trim rangeability and efficiency
- Suitable for service on liquids with medium pressure drops at small opening angles



4-4005 T01 : ASYMETRICAL DRILLED PLATES WITH EXPASION ON BALL

- Multi-stage, multi-path, asymmetrical design with outlet expansion
- High performances in a good range of openings
- Very good values of maximum capacity (Cv) in fully open position
- Typically used for gas flow applications
 - Anti-surge, Compressor control, Blowdown and Venting (with downstream drilled plate or different additional silencer)

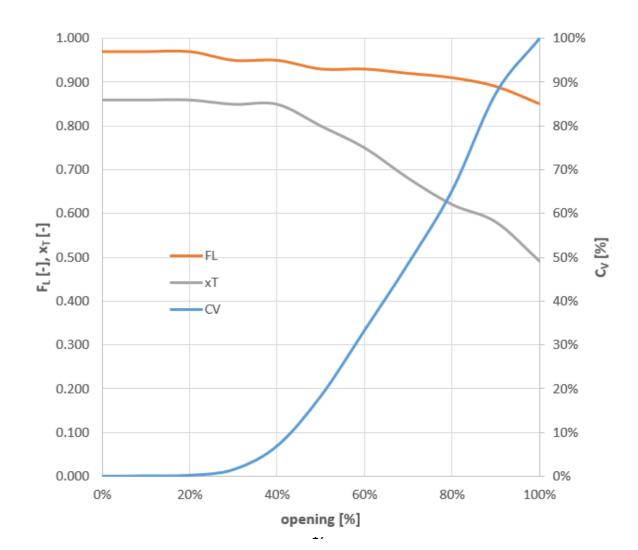


4-4005 T02 : SYMETRICAL DRILLED PLATES

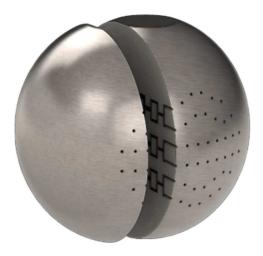
- Multi-stage, multi-path realized by parallel, symmetrical, and equally spaced drilled plates
- High performances in a good range of openings
- Very good values of maximum capacity (Cv) in fully open position
- Typically used for gas flow applications
 - Anti-surge, Compressor control, Blowdown and Venting (with downstream drilled plate or different additional silencer)

4-4006 : DRILLED PLATES with THROTTLING BAFFLE

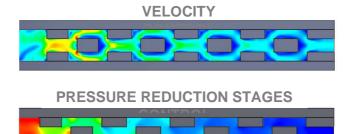
- Improved version of 4-4005 valve series including partializing baffle for increased throttling at the beginning of stroke
- Suitable when it is necessary to ensure a smooth control from very small valve opening together with a great prevention of noise and cavitation

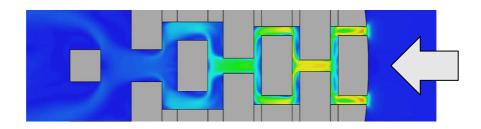


BAFFLES OPTIONS

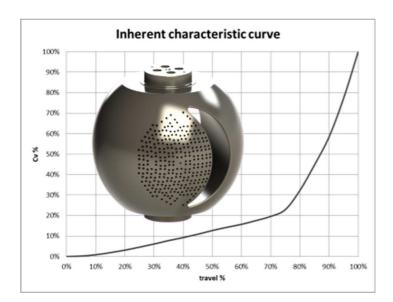

Standard drilled baffle can be replaced with Limiphon stack:

 Suitable when it is necessary to ensure the best control from very small valve opening together with state-of-art about prevention of noise and cavitation


4-4009 : LIMIPHON® MULTISTAGE MULTISTEP / MULTIPATH


- Limiphon is a Multi-step Multi-path trim for most severe process conditions, due to its high F_L and X_T values, suitable for noise and cavitation prevention both with compressible and incompressible fluids.
- Flow Velocity and Pressure drop easily controlled, step by step, for any kind of clean fluid.
- No risk of trim erosion due to limited velocity and kinetic energy under control stage by stage by proprietary design of the stack.

- No vibrations along the travel even in case of severe pressure reduction
- In Limiphon[®] trim, the Expansion of compressible fluids, due to pressure reduction, is followed by an accurate sizing of the series of passing areas
- Its Patented Diverging-Converging Labyrinth channels ensure additional energy dissipation due to interaction of colliding flows at each converging section. Labyrinth efficiency increases and the specific effect of any direction changes amplifies the energy dissipation of the fluid



4-4009 VAR : LIMIPHON® VARISTEP

- Limiphon is a Multi-step Multi-path trim for most severe process conditions, due to its high F_L values, suitable for noise and cavitation prevention both with compressible and incompressible fluids
- Flow Velocity and Pressure drop easily controlled, step by step, for any kind of clean fluid
- No risk of trim erosion due to proven limits of velocity (and kinetic energy)
- Accurate noise prediction and lower specific generated noise
- No vibrations along the travel even in case of severe pressure reduction
- The number of stages presented to the fluid is variable along the stroke: it will be very high at very low openings, where the highest pressure drop is expected and will be reduced in intermediate positions, where pressure drop is reduced as well.
- In Limiphon trim, the Expansion of compressible fluids, due to pressure reduction, is followed by an accurate sizing of the series of passing areas
- Its Patented Diverging-Converging Labyrinth channels ensure additional energy dissipation due to interaction of colliding flows at each converging section. Labyrinth efficiency increases and the specific effect of any direction changes amplifies the energy dissipation of the fluid

4-4009 VAR : LIMIPHON[®] VARISTEP

- Fluid dynamic performances
 - number of stages
 - expansion factor
 - expansion shape
 - Characteristic Curve
 - extension of Limiphon trim within the ball
 - labyrinth type at each valve opening
 - Modulating precision
 - number and position of labyrinths
 - Rangeability
- Materials and hard-facings

APPLICATIONS and SERVICES for 4-4009 VAR : LIMIPHON® BALL VALVE

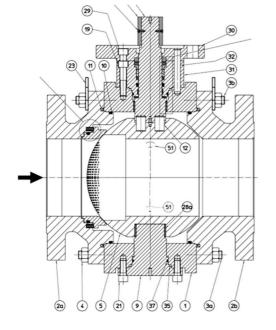
Pump Recycle

_

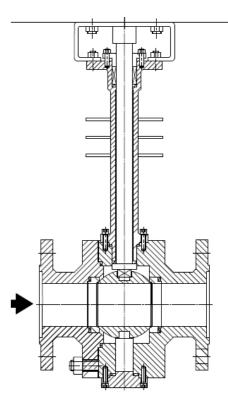
- Feed Water
- Gas to Flare

CONTROL BALL METAL SEATED 2 or 3-PIECES TRUNNION BALL

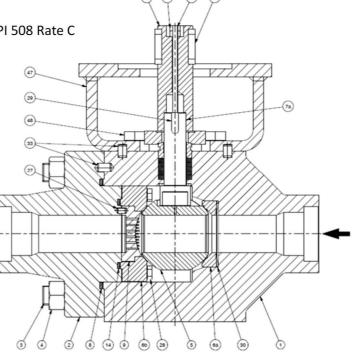
DESIGN STANDARD:


- Design: API 6D / ASME B16.34 / ISO 14313
- Face to face: API 6D / ASME B16.10
- End Connections: ASME B16.5 / ASME B16.25

CERTIFICATION:


- PED: 2014/68/EU
- ATEX 94/9/EC
- Fugitive emission: ISO 15848-1 BH/CH CO1
- TA-LUFT Packing
- SIL: IEC 61508 (SIL2, SIL3 Capable)

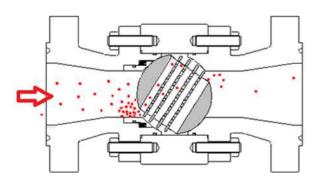
DESIGN FEATURE:

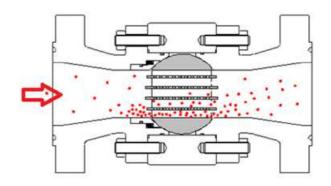

- 3-pieces or 2-pieces bolted body
- Single seat for reduced friction and operating torques
- Double seat available for DBB-1 and DBB-2 optional functions (Double-Block and Bleed).
- Fire Safe design API 607 / 6FA
- Blowout-proof ball seat and stem construction
- Standard ASME Materials and NACE, EN and other materials available on request
- High Performance Sealing
- Packing with live loading available
- Antistatic device
- Locking device
- Leakage Class up to IEC 60534-4 Cl.V and API 508 Rate C

Low-Noise Control Ball with Limiphon® Trim

Cryogenic Trunnion Ball Valve

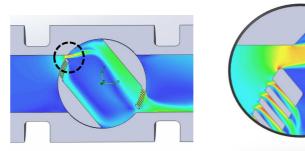
High Temperature Control Ball valve




SPECIAL FEATURES:

- SELF CLEANING Design
- Advanced SEAT PROTECTION design
- DIRTY FLUIDS applications
- Fully CUSTOMIZED DESIGN

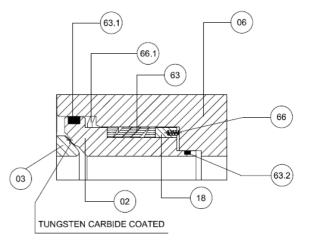
SELF CLEANING


This special design allows to clean even multistage trims from debris just fully opening the valve.

SEAT PROTECTION

Seat is protected by flow especially at the very beginning of opening thanks to this special design where the sealing surfaces are in a "shadow-zone" where fluid cannot damage them.

Seat protected from direct flow impingement


DIRTY FLUIDS and SOLIDS

Special design for dirty fluids by means of protecting scrapers (63.1 and 63.2) on upstream/downstream section of valve seats (02).

Double spring system (66 and 66.1) to improve seat recovering before and after pressurization.

Main seat gaskets with special design to reduce frictions whit low pressure drops and increasing sealing properties when the valve is pressurized.

Metal seats sealing surfaces are hardened to improve resistance to impingement and scratches due to solid particles.

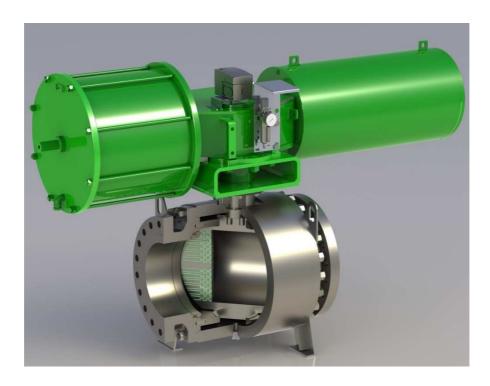
Cv TABLES for CONTROL VALVES 4-4001-2 SERIES

.

4-4001 - STA	NDARD	BALL \	/ALVE (Cv) – up	to 600#	ŧ						
DN / %Opening	0	5	10	20	30	40	50	60	70	80	90	100
2	0	5	11	18	29	47	72	104	162	245	313	360
3	0	16	31	52	83	135	207	300	466	704	900	1035
4	0	29	58	97	156	253	389	564	875	1323	1692	1945
6	0	70	139	232	371	603	927	1344	2086	3152	4032	4635
8	0	132	264	439	703	1142	1757	2548	3954	5974	7644	8786
10	0	214	428	714	1142	1856	2856	4141	6426	9710	12424	14280
12	0	328	656	1093	1748	2841	4370	6337	9833	14858	19010	21850
14	0	362	723	1205	1928	3133	4820	6989	10845	16388	20967	24100
16	0	493	986	1643	2628	4271	6570	9527	14783	22338	28580	32850
18	0	658	1316	2193	3508	5701	8770	12717	19733	29818	38150	43850
20	0	847	1694	2823	4517	7340	11292	16373	25407	38393	49120	56460
24	0	1219	2438	4064	6502	10566	16256	23571	36576	55270	70714	81280
FL	0.780	0.780	0.780	0.832	0.884	0.894	0.874	0.829	0.775	0.706	0.637	0.580
ХТ	0.500	0.500	0.500	0.653	0.723	0.727	0.677	0.581	0.462	0.352	0.259	0.180
XFZ	0.417	0.417	0.417	0.456	0.477	0.458	0.401	0.326	0.252	0.184	0.115	0.085

4-4002 – V-P	ORT (C	/)										
DN / %Opening	0	5	10	20	30	40	50	60	70	80	90	100
2	0.0	0.0	0.0	0.5	2.8	6.8	13.5	23.8	41.0	67.7	115.3	210.0
3	0.0	0.0	0.0	2.4	8.3	18.3	34.1	58.5	98.8	158.8	266.6	475.0
4	0.0	0.0	0.0	4.0	14.7	32.5	61.2	105.4	178.5	287.8	484.1	865.0
6	0.0	0.0	0.0	13.1	39.6	82.5	149.5	252.5	420.9	666.2	1108.8	1950
8	0.0	0.0	0.9	27.3	76.9	156.2	278.4	465.9	771.1	1210.6	2004.6	3500
10	0.0	0.0	10.7	58.1	142.4	274.7	473.2	777.7	1266.0	1954.3	3200.1	5500
12	0.0	0.0	0.0	36.8	127.2	277.1	515.8	883.4	1490.4	2390.5	4010.0	7135
14	0.0	0.0	18.1	100.9	248.7	480.7	829.0	1363.4	2221.0	3430.7	5620.0	9665
16	0.0	0.0	21.4	129.6	324.2	630.1	1090.9	1797.9	2934.4	4541.4	7449.5	12835
18	0.0	0.0	15.6	139.0	366.9	727.6	1276.6	2119.3	3481.7	5424.2	8937.3	15495
20	0.0	0.0	6.5	151.8	425.1	861.3	1532.8	2563.7	4240.0	6651.6	11009.3	19210
24	0.0	0.0	86.8	367.0	846.0	1591.2	2694.9	4387.3	7078.5	10834.4	17632.0	30050
FL	0.780	0.780	0.780	0.832	0.884	0.894	0.874	0.829	0.775	0.706	0.637	0.580
ХТ	0.500	0.500	0.500	0.653	0.723	0.727	0.677	0.581	0.462	0.352	0.259	0.180
XFZ	0.417	0.417	0.417	0.456	0.477	0.458	0.401	0.326	0.252	0.184	0.115	0.085

Cv TABLES for CONTROL VALVES 4-4003 SERIES


4-4003 ST-L	– DRIL	LED BAI	L LINEA	R (Cv)								
DN / %Opening	0	5	10	20	30	40	50	60	70	80	90	100
2	0.0	0.0	0.0	0.1	1.0	2.7	5.5	9.5	15.0	22.5	32.9	47
3	0.0	0.0	0.0	0.6	3.1	7.5	14.0	23.1	35.6	52.7	75.7	106
4	0.0	0.0	0.0	0.9	5.4	13.4	25.3	41.9	64.8	96.0	138.2	195
6	0.0	0.0	0.0	4.7	16.8	36.3	64.1	102.1	153.7	223.1	315.5	438
8	0.0	0.0	0.0	8.4	30.2	65.2	115.0	183.4	276.0	400.5	566.4	785
10	0.0	0.0	1.0	18.1	55.2	112.1	191.9	300.3	445.9	640.1	897.1	1234
12	0.0	0.0	1.2	25.5	78.6	160.7	275.8	432.5	643.0	923.9	1296.1	1784
14	0.0	0.0	1.5	31.4	96.3	196.1	336.1	526.5	782.3	1123.5	1575.4	2168
16	0.0	0.0	2.6	43.6	130.6	263.9	450.5	703.7	1043.6	1496.5	2095.7	2881
18	0.0	0.0	2.7	53.6	164.0	334.2	572.8	897.2	1333.1	1914.7	2684.8	3695
20	0.0	0.0	2.4	63.0	198.8	409.6	706.3	1110.4	1654.2	2380.8	3344.3	4610
24	0.0	0.0	4.6	96.4	297.2	607.2	1042.3	1634.0	2429.5	3491.3	4897.6	6742
FL	0.940	0.940	0.940	0.940	0.926	0.904	0.876	0.844	0.814	0.787	0.765	0.752
ХТ	0.827	0.827	0.827	0.826	0.800	0.735	0.648	0.555	0.477	0.425	0.403	0.393
XFZ	0.804	0.804	0.804	0.804	0.794	0.750	0.696	0.638	0.584	0.540	0.513	0.511

4-4003 ST-6	– DRIL	LED BA	LL EQUA	ALPERCE	INTAGE	(Cv)						
DN / %Opening	0	5	10	20	30	40	50	60	70	80	90	100
2	0.0	0.0	0.0	0.1	1.4	3.9	7.9	13.5	21.4	32.2	47.0	67.0
3	0.0	0.0	0.0	0.8	4.4	10.7	20.0	33.0	50.9	75.3	108.1	152.0
4	0.0	0.0	0.0	1.3	7.7	19.2	36.1	59.9	92.6	137.1	197.4	278.0
6	0.0	0.0	0.0	6.7	24.0	51.9	91.5	145.9	219.6	318.7	450.7	625.0
8	0.0	0.0	0.0	12.0	43.1	93.1	164.3	262.0	394.3	572.1	809.1	1122
10	0.0	0.0	1.4	25.9	78.8	160.1	274.1	429.0	637.0	914.4	1281.6	1763
12	0.0	0.0	1.7	36.4	112.3	229.5	394.0	617.8	918.5	1319.9	1851.6	2549
14	0.0	0.0	2.2	44.9	137.5	280.1	480.1	752.1	1117.5	1605.0	2250.5	3097
16	0.0	0.0	3.7	62.3	186.6	377.0	643.5	1005.3	1490.8	2137.9	2993.8	4115
18	0.0	0.0	3.8	76.6	234.3	477.4	818.3	1281.7	1904.4	2735.3	3835.4	5278
20	0.0	0.0	3.4	90.0	284.0	585.2	1009.0	1586.3	2363.1	3401.2	4777.6	6585
24	0.0	0.0	6.5	137.7	424.5	867.4	1489.0	2334.3	3470.7	4987.5	6996.6	9632
FL	0.940	0.940	0.940	0.940	0.926	0.904	0.876	0.844	0.814	0.787	0.765	0.752
ХТ	0.827	0.827	0.827	0.826	0.800	0.735	0.648	0.555	0.477	0.425	0.403	0.393
XFZ	0.804	0.804	0.804	0.804	0.794	0.750	0.696	0.638	0.584	0.540	0.513	0.511

4-4003 LN-I	L – DRIL	LED BA	LL - LOV	V NOISE	LINEAR	(Cv)						
DN / %Opening	0	5	10	20	30	40	50	60	70	80	90	100
2	0.0	0.0	0.0	0.1	1.3	4.2	8.7	14.5	21.5	29.1	35.6	40.0
3	0.0	0.0	0.0	1.1	5.1	12.6	23.1	36.6	52.3	70.0	86.8	97.0
4	0.0	0.0	0.0	1.7	8.9	22.8	42.0	66.7	96.1	128.9	160.7	181.0
6	0.0	0.0	0.0	7.6	30.9	65.5	110.7	167.4	233.5	305.8	378.9	422.0
8	0.0	0.0	0.0	13.0	55.3	115.6	197.3	299.1	417.2	546.5	676.0	760.0
10	0.0	0.0	2.1	34.1	104.6	200.6	328.4	484.6	665.4	861.8	1059.6	1188
12	0.0	0.0	0.0	27.4	121.9	256.8	440.3	668.9	934.5	1225.3	1518.7	1710
14	0.0	0.0	0.0	32.4	141.0	301.9	511.6	774.9	1081.7	1418.3	1760.3	1977
16	0.0	0.0	5.0	84.2	254.2	487.2	783.7	1157.0	1583.7	2059.2	2524.5	2829
18	0.0	0.0	0.0	19.1	134.2	365.9	690.7	1114.1	1616.1	2164.5	2726.1	3113
20	0.0	0.0	5.4	125.3	388.6	759.3	1248.5	1849.1	2541.9	3303.4	4051.4	4569
24	0.0	0.0	2.1	104.8	457.3	951.4	1616.0	2453.4	3420.2	4479.1	5544.2	6282
FL	0.913	0.913	0.913	0.911	0.896	0.872	0.846	0.827	0.817	0.811	0.807	0.805
ХТ	0.780	0.780	0.780	0.777	0.750	0.685	0.605	0.533	0.480	0.451	0.450	0.450
XFZ	0.777	0.777	0.777	0.775	0.749	0.704	0.658	0.628	0.599	0.582	0.575	0.572

Note: Also available as Equal%

4-4009 Limiphon[®] Ball valve – Customized multi-stage / Multi-Path trim for low-noise and gnticavitation services.

Cv TABLES for CONTROL VALVES 4-4005 SERIES

4-4005 T01	- DRIL	LED PLA	TES MU	JLTISTA	GE WITH	H BALL EX	PANSIO	N (Cv)				
DN / %Opening	0	5	10	20	30	40	50	60	70	80	90	100
6	0.0	0.0	1.1	28.6	47.6	65.0	87.6	127.7	205.2	354.5	631.0	1110
8	0.0	0.0	2.0	51.5	85.6	116.9	157.4	229.4	368.9	637.2	1134.2	1995
10	0.0	0.0	13.8	92.6	142.6	191.5	257.5	376.5	602.6	1030.2	1809.6	3140
12	0.0	0.0	18.6	132.7	205.4	275.9	371.3	542.7	869.0	1487.1	2615.6	4545
14	0.0	0.0	23.2	158.6	244.4	328.6	441.3	645.8	1033.7	1767.9	3107.0	5395
16	0.0	0.0	34.5	214.8	328.4	439.7	591.3	865.1	1383.8	2363.9	4145.7	7185
18	0.0	0.0	39.8	272.0	419.0	563.3	756.7	1107.2	1772.3	3031.2	5327.1	9250
20	0.0	0.0	40.5	332.1	518.3	698.8	939.5	1373.4	2200.6	3770.7	6644.7	11570
24	0.0	0.0	69.6	495.8	767.5	1030.7	1387.3	2027.4	3246.6	5555.9	9772.0	16980
FL	0.805	0.805	0.859	0.976	0.982	0.962	0.913	0.837	0.765	0.699	0.643	0.600
ХТ	0.619	0.619	0.714	0.938	0.938	0.881	0.783	0.637	0.458	0.326	0.259	0.225
XFZ	0.393	0.393	0.477	0.629	0.614	0.554	0.479	0.392	0.315	0.257	0.226	0.176

4-4005 T02	4-4005 T02 – DRILLED PLATES MULTISTAGE (Cv)											
DN / %Opening	0	5	10	20	30	40	50	60	70	80	90	100
6	0.0	0.0	0.9	17.1	45.5	72.3	97.4	135.4	219.5	380.3	719.1	1185
8	0.0	0.0	1.5	30.7	81.7	129.9	175.1	243.3	394.6	683.6	1292	2130
10	0.0	0.0	10.4	62.0	143.2	212.4	286.8	395.5	647.2	1104.6	2061	3350
12	0.0	0.0	13.9	87.7	205.0	306.0	413.1	570.1	932.2	1593.4	2977	4845
14	0.0	0.0	17.4	106.5	247.3	367.9	496.8	685.3	1121.1	1914.9	3575	5815
16	0.0	0.0	26.0	146.8	334.3	492.8	665.6	917.3	1502.3	2560.6	4772	7745
18	0.0	0.0	29.8	182.1	422.9	629.3	849.6	1172.1	1917.4	3275.0	6115	9945
20	0.0	0.0	31.3	216.8	517.5	780.0	1052.7	1454.2	2375.0	4068.3	7616.	12420
24	0.0	0.0	52.4	329.4	770.3	1149.7	1552.2	2142.1	3502.7	5987.1	11186	18205
FL	0.880	0.880	0.882	0.914	0.934	0.940	0.937	0.920	0.888	0.834	0.730	0.640
ХТ	0.740	0.740	0.746	0.827	0.848	0.846	0.827	0.773	0.629	0.469	0.333	0.256
XFZ	0.470	0.470	0.478	0.561	0.559	0.534	0.507	0.474	0.427	0.368	0.291	0.200

MATERIALS for PRESSURE CONTAINMENT PARTS

Some examples of Standard material selection and combination

		CARBON	LOW TEMP	INOX	DUPLEX	NACE CARBON	NACE SS		
т	Range	-29 / + 200 °C	-46 / + 200 °C	-46 / + 200 °C	-46 / + 200 °C	-46 / + 200 °C	-46 / + 200 °C		
	PART			-407 + 200°C	-407 + 200°C	-407 + 200 C	-407+200 C		
ITEM	NAME								
1	BODY (1)	SA 105	SA 350 LF2 cl.1	SA 182 F316	SA 182 F51 (6)	SA 350 LF2 cl.1	SA 182 F316 22HRC		
-	505.(1)	0,7100	0,1000 El 2 0112	0,1102.1010	0,1102101(0)	22HRC max	max		
2	CLOSURE	SA 105	SA 350 LF2 cl.1	SA 182 F316	SA 182 F51 (6)	SA 350 LF2 cl.1 22HRC max	SA 182 F316 22HRC max		
3	BOLT	SA 193 B7	SA 320 L7	SA 320 L7 (5)	SA 193 B7	SA 320 L7M	SA 320 L7M (5)		
4	NUT	SA 194 2H	SA 194 7	SA 194 7 (5)	SA 194 2H	SA 194 7M	SA 194 7M (5)		
9	BALL SUPPORT (2)	EN 10025 S355 J2	EN 10025 S355 J2	A 240 316	A 240 S31803	A 516 70 22HRC max	A 240 316 22HRC max		
10	GASKET			O-RING or	LIP-SEAL (4)				
11	FIRE SAFE GASKET			FLEXIBL	E GRAPHITE				
13	SCREW	SA 193 B7	SA 320 L7	SA 320 L7 (5)	SA 193 B7	SA 320 L7M	SA 320 L7M (5)		
18	BOTTOM FLANGE (2)	SA 105	SA 350 LF2 cl.1	SA 182 F316	SA 182 F51	SA 350 LF2 cl.1 22HRC max	SA 182 F316 22HRC max		
19	SCREW	SA 193 B7	SA 320 L7	SA 320 L7 (5)	SA 193 B7	SA 320 L7M	SA 320 L7M (5)		
20	PIN (2)	A 322 4140	A 322 4140	A 564 630 H1150	A 479 XM-19 H	A 322 4140	A 564 630 H1150M		
21	PIN	AISI 304	AISI 304	AISI 304	AISI 304	AISI 304	AISI 304		
23	LIFTING LUG	EN 10025 S355 J2	EN 10025 S355 J2	EN 10025 S355 J2	EN 10025 S355 J2	EN 10025 S355 J2	EN 10025 S355 J2		
24	VALVE SUPPORT	EN 10025 S355 J2	EN 10025 S355 J2	EN 10025 S355 J2	EN 10025 S355 J2	EN 10025 S355 J2	EN 10025 S355 J2		
27	WASHER	CARBON STEEL +	CARBON STEEL +	AISI 316L +	INCONEL 625 +	CARBON STEEL +	AISI 316L +		
	(2)	PTFE FIBRES	PTFE FIBRES	PTFE FIBRES	PTFE FIBRES	PTFE FIBRES	PTFE FIBRES		
28	BEARING	CARBON STEEL + PTFE FIBRES	CARBON STEEL + PTFE FIBRES	AISI 316L + PTFE FIBRES	INCONEL 625 + PTFE FIBRES	CARBON STEEL + PTFE FIBRES	AISI 316L + PTFE FIBRES		
29	SCREW	SA 193 B7	SA 320 L7	SA 320 L7 (5)	SA 193 B7	SA 320 L7M	SA 320 L7M (5)		
30	OPERTOR FLANGE (3)	EN 10025 S355 J2	EN 10025 S355 J2	EN 10025 S355 J2	EN 10025 S355 J2	EN 10025 S355 J2	EN 10025 S355 J2		
31	BODY COVER	SA 105	SA 350 LF2 cl.1	SA 182 F316	SA 182 F51	SA 350 LF2 cl.1 22HRC max	SA 182 F316 22HRC max		
32	PIN	A 322 4140	A 322 4140	A 564 630 H1150	A 479 XM-19 H	A 322 4140	A 564 630 H1150M		
33	WASHER	CARBON STEEL + PTFE FIBRES	CARBON STEEL + PTFE FIBRES	AISI 316L + PTFE FIBRES	INCONEL 625 + PTFE FIBRES	CARBON STEEL + PTFE FIBRES	AISI 316L + PTFE FIBRES		
34	BEARING	CARBON STEEL + PTFE FIBRES	CARBON STEEL + PTFE FIBRES	AISI 316L + PTFE FIBRES	INCONEL 625 + PTFE FIBRES	CARBON STEEL + PTFE FIBRES	AISI 316L + PTFE FIBRES		
	FIRE SAFE	FILE LIBKES	FILE LIRKES			FILE LIBKES	FILE LIBKES		
35	GASKET	ELEXIBLE GRAPHILE							
37	GASKET			O-RING or	LIP-SEAL (4)				
39	BEARING	CARBON STEEL + PTFE FIBRES	CARBON STEEL +	AISI 316L +	INCONEL 625 + PTFE FIBRES	CARBON STEEL +	AISI 316L +		
48	(2) SCREW	SA 193 B7	PTFE FIBRES SA 193 B7	PTFE FIBRES SA 193 B7	SA 193 B7	PTFE FIBRES SA 193 B7	PTFE FIBRES SA 193 B7		
40 50	YOKE	A 516 70	A 516 70	A 516 70	A 516 70	A 516 70	A 516 70		
50	DRAIN / VENT	A 516 70	A 518 70	A 518 70	A 518 70	A 516 70	A 516 70		
	PLUG								

	TRIM CLASS	13Cr ALLOY	S	TAINLESS STEEL		NA	ACE	
	TRIIVI CLASS	01	02	03	04	05	06	
	Temperature range	-29 / + 200 °C	-46 / + 200 °C	-46 / + 200 °C	-46 / + 200 °C	-46 / + 200 °C	-46 / + 200 °C	
ITEM	PART NAME							
5	BALL	A 182 F6a cl.2	A 182 F316 (11)	A 182 F51 (12)	A 182 F53 (13)	A 182 F6a cl.2 22HRC max	A 182 F316 22HRC max	
5A	CAGE (14)	A 240 410	A 240 316 (15)	A 240 S31803	A 240 S32550	A 240 410 22HRC max	A 240 316 22HRC max (15)	
6	SEAT	A 182 F6a cl.2	A 182 F316	A 182 F51	A 182 F53	A 182 F6a cl.2 22HRC max	A 182 F316 22HRC max	
7	STEM	A 564 630 H1150	A 564 630 H1150	A 479 S31803	A 479 S32550	A 564 630 H1150M	A 564 630 H1150M	
8	GASKET			O-RING o	or LIP-SEAL (4)			
12	STEM PIN	A 564 630 H1150	A 564 630 H1150	A 479 S31803	A 479 S32550	A 564 630 H1150M	A 564 630 H1150M	
14	SPRING		INCONE	INCONEL 718				
17	LOWER TRUNNION (2)	A 182 F6a cl.2	A 182 F316	A 479 S31803	A 479 S32550	A 182 F316 22HRC max	A 182 F6a cl.2 22HRC max	
47	TONGUE	A 564 630 H1150	A 479 S41500	A 479 S31803	A 479 S32550	A 564 630 H1150M	A 564 630 H1150M	

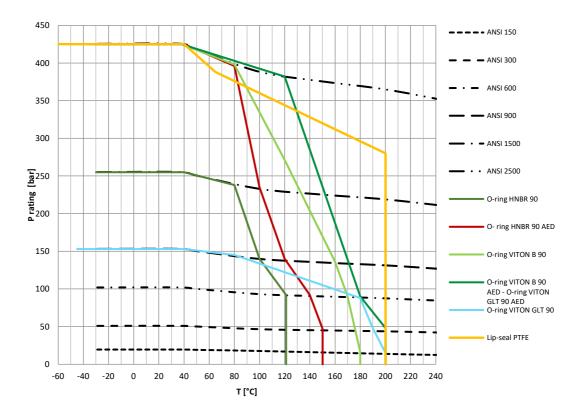
MATERIALS for TRIMS

METAL SEAT TREATMENTS

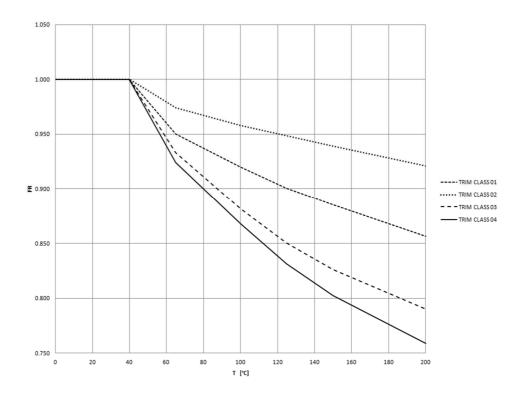
SEALING CODE	Ni-SiC Nickel-Silicon	TCC Tungsten	CCC Chromium	
	Carbide	Carbide	Carbide	
ТҮРЕ	Metal	metal	metal	
Temperature range	-46°C / + 450°C	-46 / + 190 °C	-46 / + 400 °C	
Thickness	Up to 0.05 mm	Up to 0.40 mm	Up to 0.40 mm	
Hardness	Up to 1200 HV	Up to 1200 HV	Up to 1100 HV	
Max IEC 60534 leakage class	V	V (16)	V (16)	
Max ISO 5208 leak rate	С	С	С	
PART NAME				
Ball/Seat Coating	Nickel Plating	Tungsten carbide	Chromium carbide	
Treatment	Auto-chatalyc Reaction	Thermal spray	Thermal spray	
	(bath)	process	process	

NOTES:

- (1) See body design table: primary body design (flanged body + 1 closure) or split body design (body + 2 closures).
- (2) See trunnion design table: (9), (20) and (27) applicable for support plates design, (17), (18) and (39) applicable for internal trunnion.
- (3) Applicable in case of V-pack.
- (4) See gasket chart for pressure-temperature limitations.
- (5) SA 193 B8M cl.2 and SA 194 8M available as alternative.
- (6) SA 105 + INC 625 overlay as alternative, to be evaluated over DN 20".
- (11) A351 CF3M centrifugally spun as alternative for ANSI 150 and 300, to be evaluated over DN 20".
- (12) A890 4A centrifugally spun as alternative as alternative for ANSI 150 and 300, to be evaluated over DN 20".
- (13) A890 5A centrifugally spun as alternative as alternative for ANSI 150 and 300, to be evaluated over DN 20".
- (14) Applicable for 4-4215 series; for all the other models the trim is made of the same material of the ball.
- (15) Material available up to 5 bar of max operative pressure drop.
- Otherwise consider A693 630 H1150M.
- (16) Class VI available up to DN 10" with extensive lapping activity.

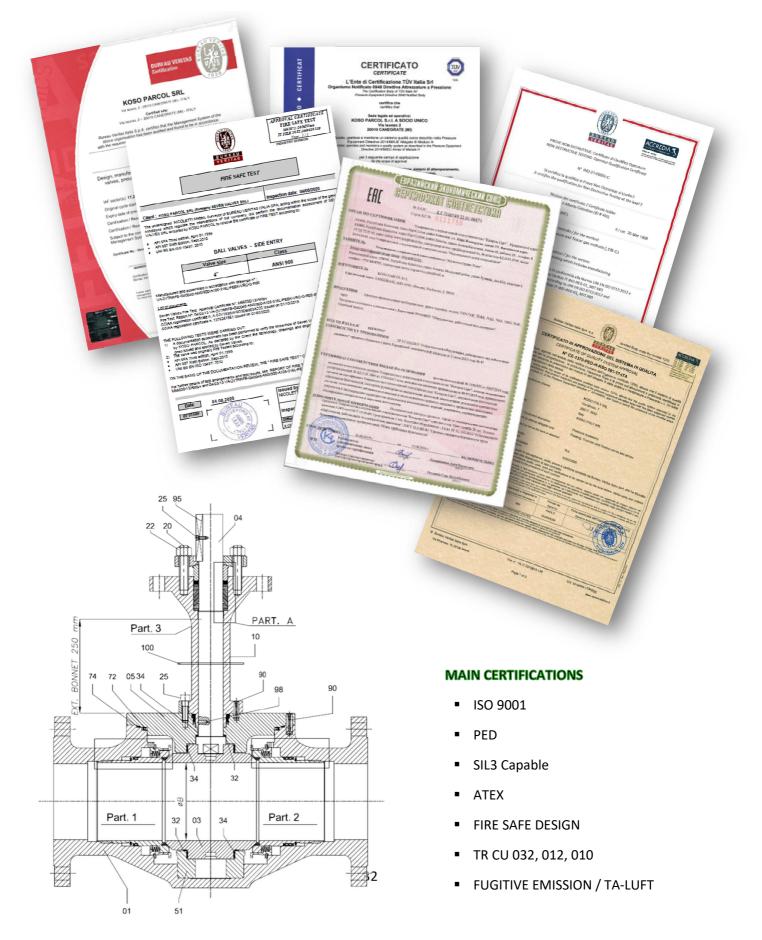


MAST TABLE


MAST [Nm]		RATING					
at ambient Temp. TRIM CLASS (22) DN		ANSI 150	ANSI 300	ANSI 600			
01		678	678	957			
02		582	582	821			
03	2″	420	420	592			
04		517	517	730			
01		1334	1334	1673			
02	- "	1144	1144	1435			
03	3″	825	825	1035			
04		1017	1017	1276			
01		1334	1334	2153			
02		1144	1144	1847			
03	4"	825	825	1333			
04		1017	1017	1642			
01		4516	4516	7438			
02		3874	3874	6380			
03	6″	2795	2795	4603			
04		3443	3443	5671			
01		12456	12456	13590			
02		10684	10684	11657			
03	8"	7708	7708	8409			
04		9497	9497	10362			
01		12456	12456	17687			
02	10"	10684	10684	15171			
03		7708	7708	10945			
04		9497	9497	13485			
01		16408	16408	24011			
02		14074	14074	20595			
03	12"	10153	10153	14857			
04		12510	12510	18307			
01		24011	24011	35253			
02		20595	20595	30238			
03	14"	14857	14857	21814			
04		18307	18307	26878			
01		28407	28407	68058			
02		24366	24366	58375			
03	16"	17578	17578	42113			
04		21658	21658	51889			
01		39425	39425	89603			
02		33816	33816	76856			
03	18"	24395	24395	55445			
04		30058	30058	68316			
01		68058	68058	106160			
02	20"	58375	58375	91057			
03		42113	42113	65690			
04		51889	51889	80940			
01		89603	89603	145096			
02		76856	76856	124454			
03	24"	55455	55455	89783			
04		68316	68316	110626			

GASKET CHART

MAST vs TEMPERATURE REDUCTION FACTOR



30

KO20 LYKCOP

Туре	Pneumatic ball valves	Electric ball valves	Electro-hydraulic ball valves
Speed	Typically fast / medium	Typically slow / very low	High speed and dynamic
	dynamic	dynamic	achievable
Stiffness	Low, due to gas	High due to mechanical	High due to hydraulic oil
	compressibility al low	transmission geometry	incompressibility
Accuracy	Precision issues (without	Valve positioning is extremely	Valve positioning is extremely
	positioner) could be	accurate if the actuator is well	accurate if hydraulic system and
	caused only by air leaks	selected. Accurate electrical	actuator are well designed.
	and pressure fluctuations.	signals result in accurate valve	
		positioning.	
Energy	Consumed energy is due	Lower energy consumption	Energy consumption is related
consumption	to air compression system.	compared to compressed air	to stroking time, pressure and
	(Could be high)	system energy (electric motor).	oil volume (generally limited).
Cost	Lower initial cost, higher	Higher initial cost, lower	Moderate initial cost (only
	operating cost.	operating cost.	actuator), lower operating cost.
Fail-safe	Easier and cheap.	Complex and Expensive.	Generally easy or not too
			complex with affordable costs.
Size/torque	lower torque-to-size ratio.	higher torque-to-size ratio.	Actuators are very small but
range			HPU can be big depending on oi
			volume and pressures/flow
Operating	Can operate in moderate	Can operate in moderate	Can operate properly with high
conditions	pressure and temperature	pressure and temperature	temperature and pressure
	conditions (including	conditions (standard design,	(including ATEX)
	ATEX)	including ATEX)	
Maintainability	Simple mechanism, limited	Complex mechanism that	Complex mechanism that
	number of components,	sometimes requires a skilled	sometimes requires a skilled
	easy to maintain.	technician	technician
Life span	Life span is variable with	More complex components	The actuator is simple, the
	operating but generally	but still easy to maintain.	hydraulic unit is extremely
	not extremely long.	Typical life span is quite long.	complex. Life-span is generally very long.
Flectromagnetic	No disturbances	May experience signal	May experience signal
interference	considering only the		disturbances only if not properly
	actuator.	designed	designed
Modulating	Recommended for	Very efficient for modulation	Extremely efficient for
control	modulating and control	and control	modulation and control
control	service		
Weight	Lightweight	Generally heavier than	Actuators are light. HPU can be
Weight		-	_
		pneumatic	very big depending on Power
			and oil volume.

CERTIFICATES

